首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347659篇
  免费   40819篇
  国内免费   31181篇
电工技术   31308篇
技术理论   15篇
综合类   30612篇
化学工业   52897篇
金属工艺   14641篇
机械仪表   26884篇
建筑科学   28160篇
矿业工程   8751篇
能源动力   13317篇
轻工业   25290篇
水利工程   9746篇
石油天然气   12151篇
武器工业   3893篇
无线电   37273篇
一般工业技术   35374篇
冶金工业   10597篇
原子能技术   5599篇
自动化技术   73151篇
  2024年   780篇
  2023年   4747篇
  2022年   8612篇
  2021年   11479篇
  2020年   11188篇
  2019年   9831篇
  2018年   9282篇
  2017年   12260篇
  2016年   14062篇
  2015年   15698篇
  2014年   19841篇
  2013年   22945篇
  2012年   26661篇
  2011年   29670篇
  2010年   21475篇
  2009年   21468篇
  2008年   22039篇
  2007年   25373篇
  2006年   23225篇
  2005年   19763篇
  2004年   16727篇
  2003年   13628篇
  2002年   10713篇
  2001年   8462篇
  2000年   7118篇
  1999年   5443篇
  1998年   4535篇
  1997年   3717篇
  1996年   3153篇
  1995年   2738篇
  1994年   2451篇
  1993年   1835篇
  1992年   1580篇
  1991年   1213篇
  1990年   1017篇
  1989年   816篇
  1988年   653篇
  1987年   432篇
  1986年   393篇
  1985年   433篇
  1984年   444篇
  1983年   376篇
  1982年   377篇
  1981年   187篇
  1980年   190篇
  1979年   90篇
  1978年   70篇
  1977年   72篇
  1976年   56篇
  1959年   47篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
71.
海上稠油热采开发过程中,通常采用蒸汽吞吐的方式进行原油开采。为满足稠油热采长效密封要求,研制了HPHT-215型热采防砂封隔器。封隔器胶筒采用特制的氟硅基复合材料+玻璃纤维网结构,并开展了材料性能评价测试。通过有限元分析和室内胶筒组合测试,对胶筒材料和组合结构进行了评价优化。室内全尺寸整机测试表明:封隔器能够满足耐温350 ℃、耐压21 MPa密封性能要求,并开展了高低温多轮次密封性能评价测试。该型热采防砂封隔器的研制成功,为海上稠油蒸汽吞吐多轮次开发提供了保障,具有广泛的应用前景。  相似文献   
72.
格点量子色动力学(格点QCD)是研究夸克、胶子等微观粒子间相互作用的重要理论和方法. 通过将时空离散化为四维结构网格, 并将量子色动力学的基本场量定义在网格上, 让研究人员可以使用数值模拟方法, 从第一性原理出发研究强子间相互作用和性质, 但这个过程中的计算量极大, 需要进行大规模并行计算. 格点QCD计算的核心基础为格点QCD求解器, 是程序运行主要的计算热点模块. 本文研究在国产异构计算平台下格点QCD求解器的实现与优化, 提出一套格点QCD求解器的设计实现, 实现了BiCGSTAB求解器, 显著降低了迭代次数; 通过对奇偶预处理技术, 降低了所求问题的计算规模; 针对国产异构加速卡的特点, 优化了Dslash模块的访存操作. 实验测试表明, 相比优化前的求解器获得了约30倍的加速比, 为国产异构超算下格点QCD软件性能优化提供了有益的参考价值.  相似文献   
73.
74.
Through a facile hydrothermal method, we have successfully prepared Ti3C2/Bi2.15WO6 (TC/BWO) composite, and systematically investigated their reactivity for the photocatalytic reduction of Cr(VI) under visible light. X-ray diffraction and Raman analysis confirm the formation of heterostructure between Bi2.15WO6 and Ti3C2. The resultant 7TC/BWO composite exhibits enhanced photoactivity toward Cr(VI) reduction. After 120 min irradiation, the conversion of Cr(VI) reaches 92.5% with the quasi-first-order kinetic constant of k = 0.0145 min?1, which is higher than that of pure BWO (30% and k = 0.0005 min?1). The electrochemical and photoluminescent characterization confirm that the introduction of Ti3C2 is conducive to the separation of carriers, thus significantly improves the photocatalytic performance of TC/BWO. Furthermore, the radical capture experiments verify that the electrons are important for enhancing reduction of Cr(VI) to Cr(III). As a result, this research provides a comprehensive understanding of the reduction of Cr(VI) by TC/BWO composite under visible light.  相似文献   
75.
In this present work, the effect of lanthanum oxides (La2O3) on the thermal cycle behavior of TBC coatings and mechanical properties such as adhesion strength and microhardness of 8% Yttria Stabilized Zirconia (8YSZ) TBCs were investigated. CoNiCrAlY and aluminium alloy (Al–13%Si) were used as bond coat and substrate materials. 8YSZ and different wt % of La2O3 (10, 20, and 30%) top coatings were applied using the atmospheric plasma spray (APS) method. The thermal cycling test for TBC coated samples were conducted at 800 °C in the electric furnace. The XRD pattern shows that the La2O3 doped 8YSZ material transformed to cubic pyrochloric structured La2Zr2O7 during thermal cycling. Further, the Taguchi-based grey relation analysis (GRA) method was applied to optimize the TBC coating parameters to achieve better mechanical properties such as adhesion strength and microhardness. And the optimized La2O3/8YSZ TBC coating was coated on CRDI engine combustion chamber components. The engine was tested with microalgae biodiesel and hydrogen, and the results were promising for the TBC-coated engine. The engine performance increased while using La2O3/8YSZ coated components, and the emissions from engine exhaust gas such as CO, HC, and smoke reduced considerably. It was found that there was no separation crack and spallation of the coating layer in the microstructure. Ultimately, the microstructural analysis of the optimized TBC coated piston sample after 50 h of running in the diesel engine confirmed that the developed coating had a superior thermal insulation effect and longer life.  相似文献   
76.
《Journal of dairy science》2022,105(1):140-153
A multiparameter study was performed to evaluate the effect of fondaco, a traditional ripening cellar without any artificial temperature and relative humidity control, on the chemical, microbiological, and sensory characteristics of Protected Geographical Indication Canestrato di Moliterno cheese. Ripening in such a nonconventional environment was associated with lower counts of lactococci, lactobacilli, and total viable bacteria, and higher presence of enterococci, in comparison with ripening in a controlled maturation room. Moreover, fondaco cheese underwent accelerated maturation, as demonstrated by faster casein degradation, greater accumulation of free AA, and higher formation of volatile organic compounds. Secondary proteolysis, as assessed by liquid chromatography-mass spectrometry of free AA and low molecular weight peptides, did not show any qualitative difference among cheeses, but fondaco samples evidenced an advanced level of peptidolysis. On the other hand, significant qualitative differences were observed in the free fatty acid profiles and in the sensory characteristics. Principal component analysis showed a clear separation of the fondaco and control cheeses, indicating that ripening in the natural room conferred unique sensory features to the product.  相似文献   
77.
《Journal of dairy science》2022,105(5):4461-4473
The provision of pasture and outdoor access for dairy cattle differs around the globe. For example, in Ireland, New Zealand, and Australia, dairy farms are largely pasture based, whereas dairy farms in the United States and Canada are largely confinement based. There is a high level of public support for pasture and outdoor access for dairy cows, and the available evidence shows that dairy cattle are highly motivated to access pasture, especially at night. The decision as to whether to provide outdoor access is typically made by farmers, but little is known about dairy farmers' perspectives on this topic. We investigated perspectives of Western Canadian dairy farmers on outdoor access, as well as how they believe different stakeholders (i.e., the dairy industry, the dairy cows, and the general public) regard outdoor access for dairy cows. Data were collected via (1) 11 focus group discussions with a total of 50 Western Canadian dairy farmers, and (2) semi-structured individual interviews with an additional 6 dairy farmers of Hutterite colonies. Data were analyzed using template analysis. Although most participants in this study did not provide outdoor access on their farms, or only provided outdoor access to certain cow groups, participants generally mentioned that they enjoyed seeing cows on pasture or outdoors. However, participants shared that the Canadian supply management system (including processors) required a consistent flow of production, which was thought to be easier and more economically realized with indoor housing of lactating cows. Participants believed that pasture or outdoor access for dairy cows was desired by the public. Some participants believed that dairy cows prefer to spend time outside under favorable weather conditions, but others felt that cows preferred to stay indoors in modern, ventilated freestall barns. The results of this study describe the perspectives of dairy farmers regarding the views of dairy industry stakeholders as they relate to outdoor access, helping to inform conversations around the provision of outdoor access for dairy cattle.  相似文献   
78.
The slight-alkalization of generator internal cooling water (GICW) is widely used to inhibit the corrosion of hollow copper conductor and thereby ensure the safe operation of the generator. CO2 inleakage is increasingly identified as a potential security risk for GICW system. In this paper, the influence of CO2 inleakage on the slight-alkalization of GICW was theoretically discussed. Based on the equilibriums of the CO2-NaOH-H2O system, CO2 inleakage saturation was derived to quantify the amount of the dissolved CO2 in GICW. This parameter can be directly calculated with the measured conductivity and the [Na+] of GICW. The influence of CO2 inleakage on the slight-alkalization conditioning of GICW and the measurement of its water quality parameters were then analyzed. The more severe the inleakage, the narrower the water quality operation ranges of GICW, resulting in the more difficult the slight-alkalization conditioning of GICW. The temperature calibrations of the conductivity and the pH value of GICW show non-linear correlations with the amount of CO2 inleakage and the NaOH dosage. This study provides insights into the influence of CO2 inleakage on the slight-alkalization of GICW, which can serve as the theoretical basis for the actual slight-alkalization when CO2 inleakage occurs.  相似文献   
79.
The utilization of biological-, electrode- and conductive material-mediated direct interspecies electron transfer (DIET) between exoelectrogenic bacteria and methanogenic archaea for enhancing methane productivity is widely reported in the literature. However, two cardinal questions are still controversial, i.e., which applied voltage value would be more recommended to enhance methane generation? and how the DIET over IIET has the upper hand in enhancing methane productivity? Herein, the influence of different applied voltages to promote biological-, conductive- and electrode-mediated DIET was investigated in MEC-AD reactors with conductive material. Polarized bioelectrodes induced electrode-mediated DIET (eDIET) and biological DIET (bDIET), in addition to cDIET (conductive material-mediated DIET), improved the methane yield to 315.40 mL/g CODr with an applied voltage of 0.9 V. Whereas further increase of applied voltage 1.2 V, lessened methane production efficiency due to high-voltage inhibition and adverse effect on DIET promotion. The anaerobic digestion coupled microbial electrolysis cells with optimal electric potential selectively promotes the DIET through polarized electrodes were confirmed through microbial analysis. As the contribution of DIET increased to 80%, the methane yield increased, and the substrate residue decreased, resulting in a significant improvement in methane production.  相似文献   
80.
We investigate synthesis, phase evolution, hollow and porous structure and magnetic properties of quasi-amorphous intermediate phase (QUAIPH) and hematite (α-Fe2O3) nanostructure synthesized by annealing of akaganeite (β-FeOOH) nanorods. It is found that the annealing temperature determines the phase composition of the products, the crystal structure/size dictates the magnetic properties whereas the final nanorod morphology is determined by the starting material. Annealing of β-FeOOH at ~300 °C resulted in the formation of hollow QUAIPH nanorods. The synthesized material shows low-cytotoxicity, superparamagnetism and good transverse relaxivity, which is rarely reported for QUAIPH. The QUAIPH nanorods started to transform to porous hematite nanostructures at ~350 °C and phase transformation was completed at 600 °C. During the annealing, the crystal structure changed from monoclinic (akaganeite) to quasi-amorphous and rhombohedral (hematite). Unusually, the crystallite size first decreased (akaganeite → QUAIPH) and then increased (QUAIPH → hematite) during annealing whereas the nanorods retained particle shape. The magnetic properties of the samples changed from antiferromagnetic (akaganeite) to superparamagnetic with blocking temperature TB = 84 K (QUAIPH) and finally to weak-ferromagnetic with the Morin transition at TM = 244 K and high coercivity HC = 1652 Oe (hematite). The low-cytotoxicity and MRI relaxivity (r2 = 5.80 mM?1 s?1 (akaganeite), r2 = 4.31 mM?1 s?1 (QUAIPH) and r2 = 5.17 mM?1 s?1 (hematite)) reveal potential for biomedical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号